
96 Economy Informatics, vol. 9, no. 1/2009

Data Security Solution for Mobile Applications

Cătălin BOJA
Economic Informatics Department,

Academy of Economic Studies, Bucharest, Romania
catalin.boja@ie.ase.ro

The paper describes security issues regarding accessing data from a mobile application.
There are presented two scenarios regarding device stored information and data access over
the network. The paper describes a security architecture based on Rijndael symmetric
encryption algorithm that offers a high level of protection for device stored data. The security
issues regarding data transfer over network are worked out using a solution based on RSA
Asymmetric Algorithm. The architecture is implemented on a Windows Mobile platform using
the Mobile Client Software Factory classes.
Keywords: security, data, mobile applications, software

Introduction
The rapid evolution of IT technology has

allowed mobile devices to become more and
more powerful, both as processing and data
storing capacity. As a direct result, the
software developers are offering solutions
that resemble as functionality and
characteristics to the desktop counterparts.
This has allowed mobile users to access and
use applications that are storing important
personal and business data. The mobility
characteristic of the devices makes it more
vulnerable than a desktop computer which is
locked in an office. As a fact, [7], each week
in the US airports are lost over 12000 laptops
and the number for small mobile devices
worldwide is far greater. This requires more
attention regarding the device sensitive data
security.

2 Security Analysis
The analysis of the security level for a
software application is an important phase in
the development process. This characteristic
is influenced by activities that take place in
the analysis, development and maintenance
stages. Hence, developers must define
objectives in the early stages that take into
consideration security measures to be
implemented in the resulting software.
Because of this subject importance, past
studies and researches, [8-9], have defined a
process, which is integrated in the product
development lifecycle, to be used to build

and maintain a high level of security. This
process, Security Development Lifecycle
(SDL) it is used by Microsoft to develop
software that needs to withstand malicious
attack, [8].
The SDL phases are:
 Requirement; in this phase it is made a

security analysis of the future product
and there are identified and defined key
security objectives; one of the phase
objectives is to make a plan that will
maximize the software security level,
minimizing flaws or possible situations to
attacks the application;

 Design; from a security point of view, the
design phase will concentrate on a
security architecture for the application;
each component of this overall
perspective on security design is analyzed
in detail in order to determine its security
risks and strengths; the components that
have a high degree of vulnerability are
included in the software attack zone;
because components in this zone are
more susceptible to attacks, there must be
conducted threat modeling processes on
them, in order to further analysis security
issues;

 Implementation; during this phase the
developer codes design specifications,
tests and integrates them into software
application; the phase of objective is to
prevent insertion of security flaws or to
remove them; in order to achieve it,

1

Economy Informatics, vol. 9, no. 1/2009 97

developers must apply coding and testing
standards, test application with fuzzing
tools, apply static-analysis code scanning
tools and conduct code reviews.

 Verification; in this phase there are
conducted more focused code reviews
and security test on the functionally
complete version of the application;
further analysis of the results may affect
the entire process;

 Release; developers must be assured that
the application final version is ready,
from a security point of view, to be
delivered to end users; this is done by
conducting a final security review that
will provide an overall picture of the
application security level and its
protection against attacks; the revision
must be conducted by development
independent entities, internal or external,
that will provide objective results;

 Response; because there is nearly
impossible to develop software without
vulnerabilities that is immune to attacks,
developers must be prepared to take
appropriate actions to reduce or repair the
effects of new discovered security issues;
based on known security reports,
developers must update their best security
practices and try to discover further
vulnerabilities.

The Security Development Lifecycle process
is defined around Microsoft SD3

 Secure by Design: the software analysis
and design takes into consideration
elements that will protect the application
data and will provide a well defined level
of security; the analysis must identify
application sensitive zones and must
provide solutions for them;

+C, [8][10],
principles:

 Secure by Default: this principle take into
consideration the fact that the resulting
software will not reach a complete level
of security; time and financial costs, low
level of security knowledge at the
software engineers level, deviations from
initial plans and other factors have a great
impact on the application security level
and in the end these generate flows in the

security architecture; in order to minimize
their negative effects, software developers
must provide multiple levels of
protection, limit the application privileges
and give access to necessary resources
only when required;

 Secure in Deployment: developers must
provide users with tools and knowledge
that will help them to make own security
reviews or to make use of the applications
entire security capabilities; a common
behavior according to this principle is to
offer software updates that will repair
known security issues;

 Communications: security issues must be
openly discussed between developer,
users and software community; this will
help identify new threats or solutions.

As seen above, an important activity of the
security development process is the security
review of the code, especially the one in
possible attack zones:
 unvalidated user input that could allow

SQL Injection, buffer overflows;
 superficial or none user authentication ;
 high level of privileges for the

application routines;
 unsecure data connections over the

network;
 hard-coded sensitive and secret data;
 storing unencrypted sensitive data on the

device, either in memory or external;
 use of deprecated API functions;
 low level of error handling routines.
The Security reviews process consists of
activities that are conducted during the
application development lifecycle. The
results are influenced by many factors, as the
developers’ experience, applications
characteristics, policies regarding software
security implementation, used technologies.
As a result, security reviews must be
repeated at each stage and the results must
have a high objectivity degree.

3 Data Threats
In [2] there are describes a series of known
threats for desktop applications that are
available also in the mobile area. The
concepts apply to situations in which the

98 Economy Informatics, vol. 9, no. 1/2009

mobile device is using the network to
communicate data or the attacker has
physical access to the device.
Brute force attack or DoS on a mobile
device that has been lost or stolen. If the
attacker wants to guess the password or it
tries to make a DoS attack on the application,
the developer may include some delays or it
might even lock out the application if too
many attempts are made.
Password guessing because it is common or
simple to deduce. Users tend to simplify the
authentication process by providing less
secure passwords like the common 1234 or a
very short one like admin, birth date, a name.
To counter this approach, the developer may
include routines that are analyzing the
strength of the user password forcing him to
give a minimum number of alphanumerical
characters.
Access secret data sent over the network in
clear text. In order to communicate with the
remote database or to access centralized
information the mobile application must use
network access. If the access requires
authentication data like passwords and
usernames, these must be sent over network
in the message body. To access the Internet
network mobile users may use wireless data
communication, GPRS, 3G, provided by the
mobile service provider or wireless hot spots.
The first approach does not offers extra
protection because it must be taken into
consideration that the traffic is routed
through a TCP/IP network between the
mobile service provider WAP Gateway ant
the remote server. In both cases, someone
could filter the incoming transmissions and
could read sensitive data if is sent as clear
text inside the TCP packet. One solution to
this problem is to use certificate based data
transfer like SSL/TSL that will encrypt data
sent over the network with the server
certificate. The developers may use
proprietary solutions that are also based on
encryption.
Access private or secret data stored on the
device. If the attacker has physical access to
the device, he might try to read data that is
stored locally in system registers, in memory

or in local configuration files. The risk of
losing the mobile device by theft or by
mistake is a great concern and it has a greater
probability of happing than the risk
associated to a personal computer. The
solution is to best hide the data and to
encrypt it. This has a great impact on the
application performance but reduces the risk
of losing important data. The architecture
described later in this paper offer an
encryption solution based on the Rijndael
algorithm. Another way of protecting data is
to correlate the security levels of the mobile
application with the ones of the operating
system.
Reverse engineering the application code
and retrieve passwords or other sensitive
data. If the passwords are stored as
unencrypted scripts in the source code it
becomes available to anyone who reverse
engineers the executable and looks in the
source code. For .NET applications the
situation is risky because the application
source is a portable executable written in the
MSIL language. The code obfuscator has no
impact on securing this type of data because
their role is to protect intellectual property by
modifying MSIL so it becomes hard for
someone using a decompiler to understand
the code. Obfuscation does not change the
value of constant values that are used to
initialize variables as password or connection
strings.
The use of “proprietary” encryption
algorithms that aren’t tested and are based
on an idea, considered by the developers new
and liable. A good encryption algorithm is
made public because its strength comes from
the intensive examination by the
cryptography community, including hackers.
This approach validates the algorithm and
highlights its efficiency and unbreakability.

4 Techniques for storing sensitive data
The methods described in the previous
chapter provide solutions for storing data but,
as seen generates a lot of problems regarding
the privacy and the security of the
information.
If the user case or the application typology

Economy Informatics, vol. 9, no. 1/2009 99

requires that data must be stored inside the
device or at a central point in the network,
the developer must design and implement
solution that will protect best possible the
information that is sensitive for the user or
developer:
 personal information with security risks

like PINs, passwords, account numbers;
 application configuration data used to

connect to remote central points like
connection strings, client authentication
accounts, encryption keys; this type of
information is transparent to the user and
is used only by the application automated
processes, like the update routine , or
support user activities.

The best technique for storing sensitive data
that has the highest security level is not to
store this information and to request it to
users every time it is needed. This approach
is not entirely efficient because a user will
not want to memorize a 160 bit Rijndael
encryption key. In practice, the solution is
more user friendly and it represents only the
entry point in the secure architecture. The
user uses an account identified by a user
name and a password which are more ease to
use, even if it is required a 12 characters
strong password.
Other solutions to this problem are based on:
 storing the secret data in active memory

for short periods of time; once the data
has been decrypted it is stored in clear
format until is used; the developer must
reduce to minimum the duration of time
the data is stored in clear; despite the
value is now in the device active memory
someone may attach a process that scans
it; best practice, suggests to manage the
value by reference and not by value,

moving it away from the program stack
to the heap; also, after the operation has
ended the memory can be rewritten with
a bogus value to remove the secret;

 using registers to manage sensitive data;
data is stored encrypted in the device OS
registers; this approach adds a additional
layer of protection if the device has
supplementary access protection based on
accounts or a general PIN (Personal
Identification Number);

 using auxiliary devices in order to
remove sensitive data from the device
itself and to put it on a dedicated secure
component like a security access card or
a token;

 using configuration files to store
encrypted sensitive data; the advantage of
this solution is given by the possibilities
to update the configuration file without
affecting the application; also, this file
can be send to the device from a central
point of management; the drawback is
given by the fact someone can get access
with ease to the configuration file;

 getting data from the network; this
removes the data out of the device but
generates additional problems regarding
storing data needed to communicate in
the first phase with the central point;

5 Secure Architecture for Internal Data
The proposed architecture, described in
figure 1, offer solutions to the problem of
storing sensitive data as connection strings or
passwords inside the mobile application. This
solution, [1] has been implemented using
Microsoft Mobile Application Blocks in the
Mobile Client Software Factory (MCSF),
[5]-[6].

100 Economy Informatics, vol. 9, no. 1/2009

Fig. 1. Secure architecture for storing local sensitive data.

The scenario that is considered to explain the
solution features has been the starting point
for deploying distributed mobile application
applications in which:
 there is a central data store that provides

access to Web Services; to used them,
mobile devices need to use data
networks, and communication must be
secured;

 there are multiple users with mobile
devices; access to the device is secured
and each one stores sensitive data in a
configuration file; to prevent unwanted
users to access the device, a user account
is required and secret data is stored
encrypted on the device;

 each user has its own authentication
credentials and this can be managed from
the central point; problems generated by
forgotten passwords are managed only by
the central point because it is the only
one that can generate new encrypted
configuration files;

 access to the central content server and to
possible device data stores is made base
on a secure login;

The secure components of the architecture
are completing the security objective as they
hides clear data from anyone who tries to get
it without proper rights:
 the configuration file is a clear XML or

ASCII file containing sensitive data as
connection strings and user credentials;
part of this file is encrypted using a
Base64 encryption key and Rijndael AES
symmetric algorithm; this key, called
master key (MK), is generated by the
central management point and it is
delivered to all the mobile devices in the
system; figure 5 describes the encrypted
form of figure 4 configuration file;

 to protect the MK data, it is encrypted
with another key, named user key (UK),
also with the AES algorithm; the
encrypted MK string is stored in the
configuration file;

 the user key (UK) is generated from the
username and password; these are data
associated to each one of the users; this
approach does not allow a user to change
its account data because it must be done
only by the central point; in the case of
recreating or changing the password, the
central point rewrites the encrypted
configuration file and sends it to the
device; figure 2 describes both the clear
version of the XML configuration file
and the encrypted one; each XML node
contains the user name, the user key
(UK) as a hash token and the encrypted
MK string;

Economy Informatics, vol. 9, no. 1/2009 101

Fig. 2. Unencrypted users credentials

 to authenticate users another protection

layer is implemented by generating a
hash token from the user name and
password; this information is also
included in the configuration file; at
login, the application first authenticates

the user by generating its token and
comparing it with the one in the
configuration file; after this point it will
generate the UK and it will decrypt the
MK and other sensitive data;

Fig. 3. Encrypted user key and master key

 to communicate with the content server,

data transmitted over the network is
encrypted by AES symmetric algorithm
using a network key (NK); this key is not
stored in the device because it can be
received from the server or it can be
generated and send it to the server; in
order to communicate the NK key to both
communication parties, the information is
transmitted between user application and
the server using RSA Asymmetric
Algorithm, [3]-[4]; the common scenario
is to generate at the device the NK key
and send it to the server encrypted with
the central point public key; after this
synchronization, the communication data

is encrypted using the NK key; this
approach is more efficient than using
RSA algorithm because the encryption
with a symmetric is more rapid and less
time consuming; if this approach has a
negative impact on the application
execution, it can be used another
approach, based on the Secure Sockets
Layer (SSL) protocol; the device can get
the server certificate over the network
before the communication starts.

The configuration file is managed using
mobile Configuration Application Block
from the MCSF. This framework provides
classes and methods used to read and encrypt
XML based configuration files.

102 Economy Informatics, vol. 9, no. 1/2009

<Endpoints>
<EndpointsItems>
<add Name="ClientsDatabase"
 Address="https://MyClientsServer/SecureServices/Clients.asmx"
 UserName="SalesAgent" Password="P@$$w0rd" />
</EndpointsItems>
</Endpoints>

Fig. 4. Mobile application configuration file

Considering the sensitive information from
the figure 4 configuration file, it is used
either ConfigSectionEncrypt tool from the
Mobile Client Software Factory (MCSF) or a

custom in-house developed application, to
encrypt the data in order to store it on the
device.

Fig. 5. Configuration file encrypted with the ConfigSectionEncrypt tool from the Mobile

Client Software Factory

The presented solution has a high degree of
security because in the end, only the user
knows the key to the system. He starts the
process by proving its own password. This
information is not in the device. Also, the
user does not know any other keys that
provide access to the encrypted data. The
information is self generated in a cascade
type process. If is interrupted at some point,
the access to clear data is denied.

6 Conclusions
Implementing good security is a must do for
any software application. The mobile device
and its particularities make it more
vulnerable because it has the capacity to store
sensitive data and has a greater risk to get
into the hands of malicious users.

There are no 100% secure methods to protect
data and the developer must ensure that has
implemented procedures that will make data
stealing a time consuming process that in the
end will discourage anyone who tries it.
Good security starts in the early phases of the
development process because it affects the
solution and how it is implemented.
In the case of mobile applications, another
characteristic that must be analyzed is the
efficiency of implemented security methods
as a time cost factor and its impact on the
application behavior. The devices are still
limited as hardware configuration and
framework support.

 References
[1] A. Wigley, D. Moth, P. Foot Microsoft

Economy Informatics, vol. 9, no. 1/2009 103

Mobile Development Handbook,
Microsoft Press, 2007, ISBN 978-0-
7356-2358-3

[2] M. Howard, David LeBlanc – Writing
Secure Code, Second Edition, Microsoft
Press, 2003, ISBN 0-7356-1722-8

[3] C. Toma Security in software distributed
platforms, ASE Publishing House,
Bucharest, 2008, ISBN 978-606-505-
125-6.

[4] V. V. Patriciu, I. Bica and M. Ene-
Pietroseanu, O. Priescu Semnatura
electronica si securitatea informatica,
All Publishing House, Bucharest, 2005.

[5] Microsoft MSDN – Mobile Client
Software Factory
http://msdn.microsoft.com/en-
gb/library/aa480471.aspx

[6] Microsoft patterns & practices – Smart
Client Guidance,

www.codeplex.com/smartclient
[7] *** Absolute Software – Computer Theft

& Recovery Statistics,
www.absolute.com/resources/computer-
theft-statistics.asp

[8] S. Lipner "The Trustworthy Computing
Security Development Lifecycle,"
Annual Computer Security Applications
Conference, ACSAC 2004, Tucson,
Arizona, December 06-10, pp 2–13,
ISSN: 1063-9527

[9] M. Howard and S. Lipner – The Security
Development Lifecycle, Microsoft Press,
Redmond, WA, 2006

[10] M. Howard A Look Inside the Security
Development Lifecycle at Microsoft,
MSDN Magazine November 2005,
http://msdn.microsoft.com/en-
us/magazine/cc163705.aspx

Cătălin BOJA is Lecturer at the Economic Informatics Department at the
Academy of Economic Studies in Bucharest, Romania. In June 2004 he has
graduated the Faculty of Cybernetics, Statistics and Economic Informatics at
the Academy of Economic Studies in Bucharest. In March 2006 he has
graduated the Informatics Project Management Master program organized by
the Academy of Economic Studies of Bucharest. He is a team member in
various undergoing university research projects where he applied most of his

project management knowledge. Also he has received a type D IPMA certification in project
management from Romanian Project Management Association which is partner of the IPMA
organization. He is the author of more than 40 journal articles and scientific presentations at
conferences. His work focuses on the analysis of data structures, assembler and high level
programming languages. He is currently holding a PhD degree on software optimization and
on improvement of software applications performance.

http://msdn.microsoft.com/en-us/magazine/cc163705.aspx�
http://msdn.microsoft.com/en-us/magazine/cc163705.aspx�

